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Abstract

The growing demand for food grains amidst resource constraints necessitates advancements in crop management.
Artificial intelligence, particularly machine learning and deep learning, is revolutionizing agricultural practices by ena-
bling data-driven, precise, and sustainable solutions. This review synthesizes advancements in artificial intelligence
applications across key domains, including crop yield prediction, precision irrigation, soil fertility mapping, insect pest
and disease forecasting, and foodgrain quality assessment. Artificial intelligence algorithms efficiently process vast
datasets from unmanned aerial vehicles, ground vehicles, and satellites, enabling precise and timely interventions.
Artificial intelligence-driven tools automate pest detection and classification, optimize irrigation with minimal human
input, generate high-resolution soil fertility maps, and enhance foodgrain quality assessment through rapid defect and
contaminant detection. Artificial intelligence-powered precision irrigation integrates real-time soil moisture data and
weather predictions for optimized water usage. Similarly, artificial intelligence-driven soil fertility mapping not only
enables high-resolution assessments but also facilitates real-time monitoring of nutrient dynamics, supporting sustain-
able land management. In pest and disease detection, artificial intelligence systems combining image processing and
real-time analytics demonstrate promise for early intervention. Artificial intelligence integration into foodgrain quality
assessment leverages hyperspectral imaging and predictive models to enhance grading, adulteration detection, and
contaminant screening, contributing to food safety and market competitiveness. Furthermore, advancements in transfer
learning and data augmentation have improved artificial intelligence adoption in regions with limited datasets. While
artificial intelligence technologies promise to boost agricultural productivity and sustainability, their efficacy and scal-
ability hinges on data quality, diversity, and availability.

>4 S.Vijayakumar, vijithau@gmail.com; S. Ajith, ajithagristat@gmail.com; N. Elakkiya, elakkiyana@gmail.com | International Rice
Research Institute, New Delhi 110012, India. 2ICAR-Indian Institute of Rice Research, Hyderabad 500 030, India. 3ICAR-Central Institute
of Brackishwater Aquaculture, Chennai 600 028, Tamil Nadu, India.

Discover Food (2025) 5:67 | https://doi.org/10.1007/544187-025-00338-1

Check for
updates

@ Discover



Review
Discover Food (2025) 5:67 | https://doi.org/10.1007/544187-025-00338-1

Graphical Abstract

Infected by
XYZ disease

Irrigate
now

Keywords Artificial intelligence - Nutrient management - Soil moisture - Crop protection - Yield forecasting

1 Introduction

Food security remains a critical priority for nations worldwide, as it underpins societal stability and well-being [1]. How-
ever, this goal is increasingly threatened by rapid population growth, diminishing natural resources, and the intensifica-
tion of biotic and abiotic stresses to crops, which collectively widen the gap between foodgrain production and demand
[2]. Addressing resource scarcity and ensuring sustainable agricultural productivity requires innovative solutions. Recent
advancements in technology offer promising opportunities to bridge this gap. [3]. The adoption of cutting-edge tools
like artificial intelligence (Al), machine learning (ML), deep learning (DL), and the Internet of Things (loT) has transformed
traditional agricultural practices. The integration of Al in agriculture improves input use efficiency, optimizing resource
allocation while boosting crop yields [4-6]. loT-based systems enable precise crop monitoring and management, ensur-
ing better utilization of scarce resources [7, 8].

Furthermore, ML and DL provide huge opportunities for real-time analysis of crop growth, health, and productivity,
supporting strategic decision-making to achieve sustainable food security [9]. Integrating these technological advance-
ments with climate-resilient agricultural practices not only addresses present challenges but also lays the foundation
for long-term sustainability [10]. Data-driven predictive models and model-based crop monitoring and disease fore-
casting are helping agricultural decision-making by enabling informed strategies for optimal resource allocation. These
approaches not only reduce cultivation costs but also enhance crop yields, addressing critical aspects of agricultural
sustainability [11]. ML and DL- models are emerging as powerful alternatives to traditional statistical models as they
effectively handle nonlinearity and complexity in the data while delivering precise results [12-14]. By leveraging these
innovations, agriculture can evolve to meet the growing demand for food while conserving resources and mitigating
environmental impacts.

Forecasting crop yield is highly important for ensuring food security, particularly in the region where production
is likely to drop [15]. The advanced yield predictions at local and regional levels empower stakeholders to anticipate
potential shortfalls and adopt timely adjustments in cultural practices to mitigate the impact of reduced yield [16]. The
pre-harvest yield prediction is equally essential for planning harvest operations, logistics, and storage, significantly
minimizing post-harvest losses and wastage of farm products [17, 18]. Furthermore, the advancement in ML and DL
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models has expanded the capability of large spatial-scale yield prediction, offering a scalable solution to address global
food security challenges [19].

Insect pests and diseases are major threats to agricultural productivity, causing an estimated loss of 20-40% in
global production and becoming a major challenge to attaining and maintaining food security [20]. Early diagnosis
of plant diseases and pest infestations is crucial, as timely intervention can prevent further spread, minimize yield
loss, reduce pesticide usage, lower production costs, and promote environmental sustainability. Moreover, early
detection helps preserve the quality of harvested produce, safeguarding market value and consumer trust [21].
Although human sight and cognition are potential tools for detecting and understanding disease symptoms and
pest damage, decision-making based on visual observation is often subjective, prone to cognitive bias, and limited
by individual expertise [22, 23]. Laboratory analyses can provide precise diagnosis but are time-intensive and may
delay necessary actions. ML and DL algorithms address these limitations by quickly and accurately detecting insect
pests and plant diseases before they cause severe yield loss [24, 25]. Advanced imaging techniques, such as visible,
thermal, near-infrared, and hyperspectral-based imaging, further enhance the capability of Al models by providing
rich, detailed inputs for analysis [26].

Another important threat to sustainable agriculture is the declining availability of irrigation water, driven by
increasing competition from other sectors and excessive groundwater extraction [27, 28]. Agriculture accounts for
over 50% of freshwater use, with Asia being a significant contributor. However, irrigation efficiency in the region
remains substantially lower than in developed countries, posing a critical challenge to water resource sustainability
[29, 30]. Advanced irrigation systems, such as loT- and sensor-based irrigation, have emerged as effective solutions
for automated water management for various crops, drastically reducing water wastage. By integrating real-time
soil moisture data with Al that predicts weather patterns, precise irrigation scheduling becomes feasible, ensuring
optimal water use and minimizing losses [31-33]. The increasing affordability of sensors, combined with increasing
digital literacy and mobile phone usage among farmers, has further accelerated the adoption of these technologies
in many regions [34].

In addition to water management, sustainable agriculture faces challenges related to low nutrient use efficiency,
high fertilizer costs, and environmental impacts, like eutrophication and greenhouse gas (GHG) emissions. Addressing
these issues necessitates faster, more accurate, and spatially detailed soil testing methods, surpassing the limitations
of traditional approaches [35, 36]. Conventional soil nutrient analysis is often labor-intensive, time-consuming, and
restricted to point-based measurements [37]. Al powered by ML and DL algorithms offers a transformative approach
to accurately predicting soil nutrient levels with greater efficiency. By analyzing complex spectral data, ML and DL
can detect soil nutrient deficiencies, enabling timely and precise corrective measures [38]. This advancement not
only enhances nutrient use efficiency but also reduces environmental impacts, paving the way for more sustainable
agricultural practices.

Ensuring the quality assessment of food grains, especially cereals, millets, and pulses, is critical for maintaining food
safety, obtaining premium prices, and detecting adulteration. Traditional methods for quality assessment, which involve
assessing parameters such as grain color, moisture, and pest infestation, are often costly, labor-intensive, and time-
consuming. Moreover, these methods frequently suffer from inconsistent results [39]. To address these limitations, rapid,
non-destructive, and accurate analytical techniques are needed. Spectral and hyperspectral imaging, combined with ML
and DL algorithms, has emerged as a powerful tool for efficient preprocessing, feature extraction, and image modeling,
enabling quick and reliable quality assessment of food grains [40, 41].

Achieving maximum yield, ensuring better quality produce, advanced insect pest and disease forecasting, and yield
prediction are paramount to securing global food security. However, crop productivity is influenced by precise crop
management strategies, such as precision irrigation, nutrient management, and effective pest and disease diagnosis.
The advancement in Al presents significant opportunities for making timely, efficient, and precise decisions in these
aspects. Therefore, an attempt was made to summarize recent research on the application of ML and DL in crop yield
prediction, pest and disease monitoring, precision irrigation, soil fertility testing, and food quality evaluation. The primary
objectives include assessing the feasibility of Al for these purposes, identifying the most suitable and accurate ML and DL
algorithms, and highlighting the barriers to large-scale Al adoption in commercial agriculture. Additionally, this review
examines different kinds of datasets used in these applications and their preprocessing methods to offer insights into
the current state of Al-driven agricultural solutions.
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2 Methodology

An extensive search was performed from online databases such as ResearchGate, Google Scholar, IEEE Xplore, and Sci-
enceDirect to collect the research and review articles on the application of ML and DL concepts concerning crop yield
prediction, pests and diseases detection, precision irrigation, soil fertility, and foodgrain quality assessment. The keywords

" " "

used for the search are “machine learning’, “deep learning’, “yield prediction’, “pest and disease detection’, “image analysis",
“precision irrigation’, “soil fertility”, “organic carbon’, “food grain quality assessment”, “neural network’, “support vector
regression”, “random forest’, and “convolution neural network”. Articles relevant to this review were screened manually.
Among the selected papers, the papers concentrated on state-of-the-art ML and DL approaches to predict crop yield,
detect insect pests and disease, precision irrigation, soil fertility evaluation, and assess foodgrain quality are examined
completely and their key findings are discussed in tabular form (Fig. 1). The country-wise number of literature reviewed

in this study is illustrated in Fig. 2.

3 Yield prediction

Many researchers have used numerous approaches to predict crop yield at different scales. ML models make better
predictions of crop yields by learning underlying patterns and relationships in the input data [42]. Artificial neural
network (ANN), support vector regression (SVR), random forest (RF), and XGBoost are the most preferred ML models,
while convolution neural network (CNN), long-short term memory (LSTM), and deep neural networks (DNN) are the
commonly used DL models for yield prediction [43-46]. The accuracy of these models largely depends on the selection
of input variables that significantly influence yield. Incorporating ML and DL models with both crop management and
remote sensing data can enhance the predictive capability of these models [47]. Similarly, the integration of remote
sensing, weather, and soil datasets into ML frameworks provides robust yield prediction even in smallholder farms [48].

However, the performance of a model often varies by location, crop type, and data availability. For example, a model
that performs better for a location or crop may not offer better performance for another location or crop. Therefore,
exploring different models with varying functional forms is essential to identify the best-fit model for a specific crop

Fig. 1 Overall methodology
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Fig.2 Country-wise representation of the number of literatures concerning a) Yield prediction b) Pest and disease prediction c) Nutrient
management d) Precision irrigation e) Food grain quality reviewed in this manuscript

and region [49]. A best-fitted model effectively learns the patterns from training datasets and delivers satisfactory
performance on new data [50]. The proportion of training and testing datasets is subjective and can influence model
outcomes. Random splitting is preferable to ensure that both recent and historical data are well-represented in training
and testing datasets [51]. Typically, 70 to 80% of the data is allocated for model training, while the remaining 20-30%
is reserved for validation of the fitted models. The summary of the few research studies on ML and DL-based prediction
of crop yield is discussed in Table 1.
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Fig.3 Stepsinvolved in pest and disease diagnosis

4 Pest and disease diagnosis

Each plant disease infestation produces a distinct visual damage on the plant parts such as leaves, stems, flowers,
grain, fruit, while each pest species exhibits unique characteristics such as shape, size, and color pattern. These dis-
tinguishing features can be effectively captured in digital images, offering a valuable dataset for analysis [62]. The
electromagnetic spectrum emitted by objects across different wavelengths provides additional information that can
be recorded and analyzed to detect plant health issues [63]. Digital image processing, combined with model-based
approaches, enables the accurate diagnosis and differentiation of pests and diseases [64]. The integration of ML
techniques further enhances this process, offering significant potential for early-stage detection and classification
of diseases and pests. ML and DL algorithms automate feature extraction, making them ideal for cost-effective crop
disease and pest detection, classification, and prediction [65]. These models are trained using labelled image datasets,
with their detection and classification accuracy validated against testing sets. Typically, the model-based detection
and classification process consist of four key steps, viz. image acquisition, image pre-processing, segmentation,
feature extraction, and classification [66]. These steps are crucial for transforming raw image data into actionable
insights (Fig. 3).

4.1 Image acquisition

The first step in the process is image acquisition, which involves capturing high-resolution images of both infected and
healthy plant leaves. For optimal results, images should be taken under natural lighting conditions using a high-resolution
digital camera. To increase dataset diversity, the multipatch technique is used, splitting captured image into several
smaller patches [67]. Data-augmentation techniques, such as random cropping, scaling, rotation, noise injection, and
translation, are applied to expand small datasets and improve model performance. Additionally, open-access repositories
like PlantVillage, which hosts over 50,000 curated images of healthy and infected crop leaves serve as valuable resources
for training datasets [68].

4.2 Image pre-processing

Images captured in field conditions often contain complex backgrounds, multiple leaves, and varying lighting conditions,
which can hinder model accuracy [69]. Preprocessing these images is an important step to remove undesired distortion
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and enhance quality, enabling models to effectively learn the patterns of symptoms. The process typically involves
clipping the images to focus on the region of interest, applying smoothing filters such as the Gaussian filter to reduce
noise, and performing image enhancement to improve contrast [70].

4.3 Segmentation

In the image segmentation process, the pixels with similar color and brightness values are grouped to isolate the
targeted regions, such as infected areas on diseased leaves. This step ensures that only relevant areas are analyzed for
disease. Among segmentation techniques, the k-means clustering algorithm is commonly used due to its effectiveness
in grouping similar pixels [71].

4.4 Feature extraction

Feature extraction simplifies the learning process by identifying critical features in the input images that the classification
models can process. Techniques like the Histogram of Oriented Gradients (HoG) analyze the gradient distribution of
edges oriented in various directions, enabling robust feature detection [72]. Other commonly used algorithms include
Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), which extract essential features even
in varying image conditions.

4.5 Classification

In the classification stage, predefined features, corresponding to healthy, non-healthy, and disease-specific patterns are
used to train ML or DL algorithms. These models compare the color and texture variations in input images with predefined
feature sets, classifying the leaves as either healthy or infected. For infected leaves, the models further determine specific
diseases based on symptom patterns [73].

CNN has become a vital algorithm in pattern recognition in image processing [74]. A hybrid DL system that combines
segmentation and classification capabilities can effectively identify infected regions on leaves and determine the
specific disease [75]. When the training dataset includes all possible symptom variations of a disease, DL models handle
classification challenges efficiently, ensuring robust disease identification [76]. Model performance is typically evaluated
using standard object detection metrics, such as accuracy, precision, recall, and F1-score [77]. A detailed review of selected
research papers on pest and disease detection and monitoring is discussed in Table 2.

In the field condition, fully automated pest detection without traps remains a significant challenge since many pests
tend to reside on the undersides of leaves. Pheromone-based glue traps provide a practical solution, where pests are
attracted and captured, and their images are recorded using a digital camera mounted above the trap [93]. However,
this approach is less effective for pests that inflict damage during their larval stages. Accurate pest classification presents
another challenge, as visual similarities between target and non-target pests can lead to misclassification [94]. To address
this, models must be trained on extensive datasets containing wide diverse conditions to attain high precision [95, 96].
Data augmentation techniques, such as varying insect orientations and scales, are particularly beneficial for enhancing
model performance in pest detection tasks [97]. Integration of remote sensing with ML and DL models has demonstrated
high accuracy and efficiency in pest and disease monitoring, offering a scalable solution for agricultural management [98].

5 Soil nutrient level detection using ML and DL algorithms

The major processes involved in Al-based soil nutrient diagnosis are presented in Fig. 4. It begins with the collection of
spectral data from sources such as satellites, UAVs, and spectrometers, alongside ground-truth soil samples to provide
essential reference nutrient values for training and validating Al models. Preprocessing steps are then applied to the
spectral data to remove noise and calibrate it with ground-truth nutrient values, ensuring accuracy and reliability. Key
spectral features are subsequently extracted to focus on nutrient-specific information. Techniques like band selection
and PCA are employed to isolate the spectral bands most strongly correlated with specific soil nutrients. Using this
refined dataset, algorithms like RF, SVM, and XGBoost are trained. These models are optimized through hyperparameter
tuning, and validated using robust cross-validation techniques and metrics such as R* and RMSE. Once validated, these
models predict nutrient levels, producing nutrient distribution maps that guide precision soil management practices
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Nutrient Prediction Decision-Making

Data Acquisition & Mapping & Implementation

Preprocessing & Model Validation

Calibration & Evaluation

Model Selection &
Training

Fig.4 Major steps involved in soil nutrient level detection using ML and DL algorithms

like variable-rate fertilization. Continuous feedback and data from field applications are used to refine model accuracy
and adaptability over time.

Pairing appropriate Al algorithms with spectral data significantly enhances the predictive accuracy of soil nutrient
levels, a crucial aspect of effective soil management and sustainable agriculture. Our review of previously published
research reveals that RF and SVR are among the most effective algorithms, particularly for predicting soil organic
matter (SOM) and soil organic carbon (SOC). These algorithms consistently achieve high R? values. highlighting their
robustness in handling spectral data across diverse sources [99-101]. Additionally, the Gradient Boosting Regression
Tree (GBRT) algorithm has proven to be highly effective for multi-nutrient prediction (N, P, K). With its ability to achieve
high ratio of performance to deviation (RPD) values, GBRT is well-suited for applications that require complex nutrient
assessments [102]. Additionally, Al algorithms have shown their capability to effectively process diverse spectral datasets,
including satellite and UAV data, to predict soil nutrient levels with remarkable precision (Table 3).

However, the choice of spectral data source significantly influences the accuracy of soil nutrient predictions. For
example, Sentinel-2 and spectrometers have demonstrated superior accuracy in nutrient prediction when combined with
advanced ML algorithms such as RF [103]. On the other hand, data from Landsat-8 showed comparatively lower predictive
performance, indicating its limited applicability for soil nutrient assessment in certain contexts [102]. Compared to
satellite data, UAV systems offer rapid, and highly accurate assessments, making them ideal for real-time, field-scale
monitoring, a key advantage for precision agriculture applications. Most studies prioritize predicting SOC and SOM,
essential indicators of soil health (Table 3). Very few studies have been attempted for multi-nutrient prediction. The
multi-nutrient modeling approach could provide a holistic understanding of soil nutrient status, enabling timely nutrient
management interventions.

6 Precision irrigation scheduling using Al

The essential steps in Al-based irrigation water scheduling are outlined in Fig. 5. The process begins with data collec-
tion, where real-time soil moisture data, along with historical weather, crop type, and field condition data from sensors
and climate sources, is gathered. Preprocessing ensures data quality through cleaning, normalization, and calibration.
Feature engineering then identifies critical variables, such as soil moisture levels and crop growth stages to enhance
model accuracy. In model training, ML models (e.g., LSTM, Q-Networks) are selected and trained using historical data
to recognize irrigation patterns. Validation follows, assessing model reliability with metrics like accuracy and RMSE.
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Table 3 Performance of different machine learning and deep learning algorithms in predicting soil nutrient levels focusing on the use of
various spectral sources

Spectral source Al-algorithm Nutrient Performance References
GaiaSorter-dual PLSR SOC R20.61 [101]
camera
Landsat-8 GBDT SOC R%0.147 [102]
Sentinel-2 RF SOM R? 0.445 [103]
Spectrometer SVM SOC R?0.32 [99]
Spectrometer Cubist SOC R%0.35 [100]
Sentinel-2 XGBoost soC R?0.84 [104]
Spectrometer GBRT N, P K GBRT with RPD 2.64, 3.93 and 2.38 for  [105]
N, P and K, respectively
SVR AisaFenix sensor P, K, Ca, Mg, Cl, SOM R?0.87 [106]
CART UAV N, SOC Overall Accuracy 87% [107]
RF Prisma SOM R?0.92 [108]
Stepwise multiple MODIS SOM R?0.725 [109]
regression
RF ASD field spectrometer SOM R?0.838 [110]

Data
Collection

Feature

axd Preprocessing e
N = Engineering

Model

Training

Irrigation
axd Validation S

Scheduling

Implementation
e

Monitoring
& Feedback

Fig.5 Major steps involved in Al-based irrigation scheduling

For irrigation scheduling, real-time schedules are generated based on predicted water requirements, integrating cur-
rent weather forecasts. During implementation and feedback, these schedules are applied in the field, and continuous
feedback from new data refines the model. Finally, monitoring allows for adjusting schedules based on field responses,
optimizing water efficiency over time.

The application of Al in irrigation has led to substantial water savings across various crops. For instance, [111]
documented a 43% reduction in water usage for farmland irrigation, while [31] reported approximately 30% savings
for potato crops. Notably, [112] observed a 74% reduction in runoff for turfgrass irrigation using a Radial Basis Function
Support Vector Machine (RBF-SVM) model. It underscores Al's potential to minimize water pollution risks from agricultural
runoff, especially in crops requiring precise water control. Al models not only improve water-use efficiency but also
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enhance profitability in crops like maize and wheat [113]. ML models have achieved 97.8% accuracy in predicting soil
humidity and temperature, facilitating real-time, precision irrigation [114].

The K-Nearest Neighbor (KNN) algorithm predicts crop water requirement based on crop growth stage with an accuracy
of 97.4% and proposes an automated irrigation model that can improve water productivity [115]. Adaboost models
achieved 71% accuracy in rice water demand forecasting [32], and Deep Q-Networks achieved 20-30% water savings in
tomato irrigation [116], both demonstrate Al's potential for crop-specific, efficient water management solutions tailored
to environmental conditions. Overall, Al models can be utilized to optimize water use, improve irrigation scheduling,
and increase economic returns across a variety of crops. The Al-based irrigation scheduling in different crops along with
its benefits is summarized in Table 4.

7 Foodgrain quality assessments using Al

Al applications are revolutionizing foodgrain quality assessments by enabling rapid, accurate identification of high and
low quality food products. Various ML and DL algorithms have assessed characteristics like color, texture, and kernel
integrity across different grains. For wheat quality assessment, ML algorithms such as SVM, KNN, multilayer perceptron
(MLP), and Naive Bayes (NB) have been used effectively to differentiate good and poor-quality grains. SVM, in particular,
demonstrated a high accuracy of 93.46% in wheat quality classification based on color and texture features [117]. In
contrast, DL approaches, such as the bidirectional long short-term memory (BiLSTM) algorithm, achieved even higher
accuracy (99.5%) in distinguishing sunn pests (Eurygaster integriceps) affected wheat grains [118].

For maize kernel inspection, [119] developed an automatic inspection machine for maize kernel inspection via
two-sided image capture and analysis. Using the CNN-based ResNet model, this system accurately classifies detective
maize kernels as poor quality. This system processes approximately 500 g of maize kernels (around 1,250 kernels) in
just 25 s, allowing for high-throughput and efficient defect detection. Similarly, advancements in Al have significantly
improved adulteration detection in rice varieties. Estrada-Pérez et al. [120] employed CNNs to analyze thermographic
images captured during cooling, effectively identifying adulterated rice samples and demonstrating that CNNs can be
applied to non-visible quality traits. Similarly, pulse quality and impurity detection are facilitated by the FoodExpert
mobile application, which uses the RF classification algorithm to sort pulses into quality grades and detect synthetic dye
adulterations based on image data. This tool achieved 96% accuracy in pulse grading and 94% accuracy in identifying
dye adulterations [121].

8 Limitations in using ML/DL algorithms

Conceptually ML/DL algorithms reproducibly mimic the biological human nervous system. However, the solutions they
produce depend solely on the information with which the system is trained. These algorithms may produce misleading
results when the ground reality is poorly represented by the input information [122]. These models may induce bias
when irrelevant data, inappropriate pre-processing, lack of diversity, and imbalance in the data [123]. Especially, in
pattern detection and classification problems like pest and disease detection, the accuracy and reliability of results are
particularly sensitive to the prepossessing of images. The reliability and stability of the ML/DL models heavily depend
on the size, quality, and diversity of the training data [124, 125].

ML and DL models require a large and more accurate dataset on weather and other environmental variables during
crop season to find the best-performing model [126, 127]. Particularly, DL models require large amounts of data to provide
stable performance and they generally exhibit poor performance with small datasets [128-130]. The availability of quality
and long-term data is a constraint, especially for developing countries. However, artificial data augmentation techniques
help deal with the problem of limited data availability to some extent [131]. Further, the transfer learning approach is
helpful in this regard, in which models that are already trained on general global datasets can be utilized. Such models
can be tuned to perform specific tasks by training considerably smaller and available problem-specific datasets [132].

Most of the ML and DL models are like “black boxes”[133]. Particularly, the DL structure consists of many hidden layers
with numerous neurons per layer that perform multiple nonlinear transformations to produce a close to accurate level
of precision for prediction. However, the interpretability of such models is a technically challenging issue, and virtually
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impossible to see what is inside [134, 135]. However, the limitation of non-interpretability of ML/DL models can be
ignored if the primary objective is just prediction [136].

The researchers need to have a solid knowledge of the working principle of ML/DL concepts to choose the appropriate
algorithm for the problem under study. These analyses are generally performed using high-end coding software.
Therefore, it is required to have good programming skills to avoid implementation errors [137]. Computer hardware with
a high processing power is an obvious requirement to process large datasets by such a complex algorithm in reasonable
timescales without any technical issues [138].

9 Potential future directions

Generally, the models are trained using observed historical data. However, it is important to incorporate dynamic
updating mechanisms in the models to update the parameters to the latest available data. In field conditions, the
plants are often infected by multiple diseases and the infected leaves exhibit the symptoms of different diseases.
Therefore, to diagnose symptom-wise diseases, the models are to be trained in such a way as to capture the symptom
patterns of each disease. The algorithms are to be trained in such a way that the results produced by them are less
sensitive to extreme cases. The development of more transparent, interpretable, and accountable algorithms is the
need of the hour. Integrating domain knowledge with algorithms is desirable to improve the practical utility of the
models. It is highly important to design the algorithms to account for ethical considerations too.

10 Conclusions

Al applications in yield prediction, pest and disease diagnosis, soil fertility assessment, precision irrigation, and
food quality have shown transformative potential for sustainable agriculture. In yield prediction, Al algorithms
provide accurate forecasts based on climate, soil, and crop growth data, empowering farmers and policymakers to
make proactive decisions to enhance productivity. The pest and disease diagnosis models enable early and precise
detection, reducing crop loss and minimizing pesticide use. Soil fertility assessment benefits from ML techniques that
analyze different spectra quickly with higher spatial and temporal resolution, helping farmers apply nutrients precisely
where needed, improving nutrient use efficiency, soil health, and preventing fertilizer-associated pollution. Al-driven
precision irrigation models process real-time soil moisture and weather data, ensuring optimal water usage and
significantly conserving water resources while maximizing crop growth. Lastly, Al tools for food quality assessment
leverage imaging and ML algorithms to sort grains, detect adulterations, and ensure high-quality produce reaches
consumers. Together, these advancements underscore Al’s critical role in enhancing efficiency, sustainability, and
profitability in modern agriculture, laying the foundation for more resilient and resource-efficient farming systems.
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