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Abstract
The growing demand for food grains amidst resource constraints necessitates advancements in crop management. 
Artificial intelligence, particularly machine learning and deep learning, is revolutionizing agricultural practices by ena-
bling data-driven, precise, and sustainable solutions. This review synthesizes advancements in artificial intelligence 
applications across key domains, including crop yield prediction, precision irrigation, soil fertility mapping, insect pest 
and disease forecasting, and foodgrain quality assessment. Artificial intelligence algorithms efficiently process vast 
datasets from unmanned aerial vehicles, ground vehicles, and satellites, enabling precise and timely interventions. 
Artificial intelligence-driven tools automate pest detection and classification, optimize irrigation with minimal human 
input, generate high-resolution soil fertility maps, and enhance foodgrain quality assessment through rapid defect and 
contaminant detection. Artificial intelligence-powered precision irrigation integrates real-time soil moisture data and 
weather predictions for optimized water usage. Similarly, artificial intelligence-driven soil fertility mapping not only 
enables high-resolution assessments but also facilitates real-time monitoring of nutrient dynamics, supporting sustain-
able land management. In pest and disease detection, artificial intelligence systems combining image processing and 
real-time analytics demonstrate promise for early intervention. Artificial intelligence integration into foodgrain quality 
assessment leverages hyperspectral imaging and predictive models to enhance grading, adulteration detection, and 
contaminant screening, contributing to food safety and market competitiveness. Furthermore, advancements in transfer 
learning and data augmentation have improved artificial intelligence adoption in regions with limited datasets. While 
artificial intelligence technologies promise to boost agricultural productivity and sustainability, their efficacy and scal-
ability hinges on data quality, diversity, and availability.
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Research Institute, New Delhi 110012, India. 2ICAR-Indian Institute of Rice Research, Hyderabad 500 030, India. 3ICAR-Central Institute 
of Brackishwater Aquaculture, Chennai 600 028, Tamil Nadu, India.



Vol:.(1234567890)

Review  
Discover Food            (2025) 5:67  | https://doi.org/10.1007/s44187-025-00338-1

Graphical Abstract

Keywords Artificial intelligence · Nutrient management · Soil moisture · Crop protection · Yield forecasting

1 Introduction

Food security remains a critical priority for nations worldwide, as it underpins societal stability and well-being [1]. How-
ever, this goal is increasingly threatened by rapid population growth, diminishing natural resources, and the intensifica-
tion of biotic and abiotic stresses to crops, which collectively widen the gap between foodgrain production and demand 
[2]. Addressing resource scarcity and ensuring sustainable agricultural productivity requires innovative solutions. Recent 
advancements in technology offer promising opportunities to bridge this gap. [3]. The adoption of cutting-edge tools 
like artificial intelligence (AI), machine learning (ML), deep learning (DL), and the Internet of Things (IoT) has transformed 
traditional agricultural practices. The integration of AI in agriculture improves input use efficiency, optimizing resource 
allocation while boosting crop yields [4–6]. IoT-based systems enable precise crop monitoring and management, ensur-
ing better utilization of scarce resources [7, 8].

Furthermore, ML and DL provide huge opportunities for real-time analysis of crop growth, health, and productivity, 
supporting strategic decision-making to achieve sustainable food security [9]. Integrating these technological advance-
ments with climate-resilient agricultural practices not only addresses present challenges but also lays the foundation 
for long-term sustainability [10]. Data-driven predictive models and model-based crop monitoring and disease fore-
casting are helping agricultural decision-making by enabling informed strategies for optimal resource allocation. These 
approaches not only reduce cultivation costs but also enhance crop yields, addressing critical aspects of agricultural 
sustainability [11]. ML and DL- models are emerging as powerful alternatives to traditional statistical models as they 
effectively handle nonlinearity and complexity in the data while delivering precise results [12–14]. By leveraging these 
innovations, agriculture can evolve to meet the growing demand for food while conserving resources and mitigating 
environmental impacts.

Forecasting crop yield is highly important for ensuring food security, particularly in the region where production 
is likely to drop [15]. The advanced yield predictions at local and regional levels empower stakeholders to anticipate 
potential shortfalls and adopt timely adjustments in cultural practices to mitigate the impact of reduced yield [16]. The 
pre-harvest yield prediction is equally essential for planning harvest operations, logistics, and storage, significantly 
minimizing post-harvest losses and wastage of farm products [17, 18]. Furthermore, the advancement in ML and DL 
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models has expanded the capability of large spatial-scale yield prediction, offering a scalable solution to address global 
food security challenges [19].

Insect pests and diseases are major threats to agricultural productivity, causing an estimated loss of 20–40% in 
global production and becoming a major challenge to attaining and maintaining food security [20]. Early diagnosis 
of plant diseases and pest infestations is crucial, as timely intervention can prevent further spread, minimize yield 
loss, reduce pesticide usage, lower production costs, and promote environmental sustainability. Moreover, early 
detection helps preserve the quality of harvested produce, safeguarding market value and consumer trust [21]. 
Although human sight and cognition are potential tools for detecting and understanding disease symptoms and 
pest damage, decision-making based on visual observation is often subjective, prone to cognitive bias, and limited 
by individual expertise [22, 23]. Laboratory analyses can provide precise diagnosis but are time-intensive and may 
delay necessary actions. ML and DL algorithms address these limitations by quickly and accurately detecting insect 
pests and plant diseases before they cause severe yield loss [24, 25]. Advanced imaging techniques, such as visible, 
thermal, near-infrared, and hyperspectral-based imaging, further enhance the capability of AI models by providing 
rich, detailed inputs for analysis [26].

Another important threat to sustainable agriculture is the declining availability of irrigation water, driven by 
increasing competition from other sectors and excessive groundwater extraction [27, 28]. Agriculture accounts for 
over 50% of freshwater use, with Asia being a significant contributor. However, irrigation efficiency in the region 
remains substantially lower than in developed countries, posing a critical challenge to water resource sustainability 
[29, 30]. Advanced irrigation systems, such as IoT- and sensor-based irrigation, have emerged as effective solutions 
for automated water management for various crops, drastically reducing water wastage. By integrating real-time 
soil moisture data with AI that predicts weather patterns, precise irrigation scheduling becomes feasible, ensuring 
optimal water use and minimizing losses [31–33]. The increasing affordability of sensors, combined with increasing 
digital literacy and mobile phone usage among farmers, has further accelerated the adoption of these technologies 
in many regions [34].

In addition to water management, sustainable agriculture faces challenges related to low nutrient use efficiency, 
high fertilizer costs, and environmental impacts, like eutrophication and greenhouse gas (GHG) emissions. Addressing 
these issues necessitates faster, more accurate, and spatially detailed soil testing methods, surpassing the limitations 
of traditional approaches [35, 36]. Conventional soil nutrient analysis is often labor-intensive, time-consuming, and 
restricted to point-based measurements [37]. AI powered by ML and DL algorithms offers a transformative approach 
to accurately predicting soil nutrient levels with greater efficiency. By analyzing complex spectral data, ML and DL 
can detect soil nutrient deficiencies, enabling timely and precise corrective measures [38]. This advancement not 
only enhances nutrient use efficiency but also reduces environmental impacts, paving the way for more sustainable 
agricultural practices.

Ensuring the quality assessment of food grains, especially cereals, millets, and pulses, is critical for maintaining food 
safety, obtaining premium prices, and detecting adulteration. Traditional methods for quality assessment, which involve 
assessing parameters such as grain color, moisture, and pest infestation, are often costly, labor-intensive, and time-
consuming. Moreover, these methods frequently suffer from inconsistent results [39]. To address these limitations, rapid, 
non-destructive, and accurate analytical techniques are needed. Spectral and hyperspectral imaging, combined with ML 
and DL algorithms, has emerged as a powerful tool for efficient preprocessing, feature extraction, and image modeling, 
enabling quick and reliable quality assessment of food grains [40, 41].

Achieving maximum yield, ensuring better quality produce, advanced insect pest and disease forecasting, and yield 
prediction are paramount to securing global food security. However, crop productivity is influenced by precise crop 
management strategies, such as precision irrigation, nutrient management, and effective pest and disease diagnosis. 
The advancement in AI presents significant opportunities for making timely, efficient, and precise decisions in these 
aspects. Therefore, an attempt was made to summarize recent research on the application of ML and DL in crop yield 
prediction, pest and disease monitoring, precision irrigation, soil fertility testing, and food quality evaluation. The primary 
objectives include assessing the feasibility of AI for these purposes, identifying the most suitable and accurate ML and DL 
algorithms, and highlighting the barriers to large-scale AI adoption in commercial agriculture. Additionally, this review 
examines different kinds of datasets used in these applications and their preprocessing methods to offer insights into 
the current state of AI-driven agricultural solutions.
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2  Methodology

An extensive search was performed from online databases such as ResearchGate, Google Scholar, IEEE Xplore, and Sci-
enceDirect to collect the research and review articles on the application of ML and DL concepts concerning crop yield 
prediction, pests and diseases detection, precision irrigation, soil fertility, and foodgrain quality assessment. The keywords 
used for the search are “machine learning”, “deep learning”, “yield prediction”, “pest and disease detection”, “image analysis”, 
“precision irrigation”, “soil fertility”, “organic carbon”, “food grain quality assessment”, “neural network”, “support vector 
regression”, “random forest”, and “convolution neural network”. Articles relevant to this review were screened manually. 
Among the selected papers, the papers concentrated on state-of-the-art ML and DL approaches to predict crop yield, 
detect insect pests and disease, precision irrigation, soil fertility evaluation, and assess foodgrain quality are examined 
completely and their key findings are discussed in tabular form (Fig. 1). The country-wise number of literature reviewed 
in this study is illustrated in Fig. 2.

3  Yield prediction

Many researchers have used numerous approaches to predict crop yield at different scales. ML models make better 
predictions of crop yields by learning underlying patterns and relationships in the input data [42]. Artificial neural 
network (ANN), support vector regression (SVR), random forest (RF), and XGBoost are the most preferred ML models, 
while convolution neural network (CNN), long-short term memory (LSTM), and deep neural networks (DNN) are the 
commonly used DL models for yield prediction [43–46]. The accuracy of these models largely depends on the selection 
of input variables that significantly influence yield. Incorporating ML and DL models with both crop management and 
remote sensing data can enhance the predictive capability of these models [47]. Similarly, the integration of remote 
sensing, weather, and soil datasets into ML frameworks provides robust yield prediction even in smallholder farms [48].

However, the performance of a model often varies by location, crop type, and data availability. For example, a model 
that performs better for a location or crop may not offer better performance for another location or crop. Therefore, 
exploring different models with varying functional forms is essential to identify the best-fit model for a specific crop 

Fig. 1  Overall methodology 
followed in the literature 
screening and selection



Vol.:(0123456789)

Discover Food            (2025) 5:67  | https://doi.org/10.1007/s44187-025-00338-1 
 Review

and region [49]. A best-fitted model effectively learns the patterns from training datasets and delivers satisfactory 
performance on new data [50]. The proportion of training and testing datasets is subjective and can influence model 
outcomes. Random splitting is preferable to ensure that both recent and historical data are well-represented in training 
and testing datasets [51]. Typically, 70 to 80% of the data is allocated for model training, while the remaining 20–30% 
is reserved for validation of the fitted models. The summary of the few research studies on ML and DL-based prediction 
of crop yield is discussed in Table 1.

Fig. 2  Country-wise representation of the number of literatures concerning a) Yield prediction b) Pest and disease prediction c) Nutrient 
management d) Precision irrigation e) Food grain quality reviewed in this manuscript
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4  Pest and disease diagnosis

Each plant disease infestation produces a distinct visual damage on the plant parts such as leaves, stems, flowers, 
grain, fruit, while each pest species exhibits unique characteristics such as shape, size, and color pattern. These dis-
tinguishing features can be effectively captured in digital images, offering a valuable dataset for analysis [62]. The 
electromagnetic spectrum emitted by objects across different wavelengths provides additional information that can 
be recorded and analyzed to detect plant health issues [63]. Digital image processing, combined with model-based 
approaches, enables the accurate diagnosis and differentiation of pests and diseases [64]. The integration of ML 
techniques further enhances this process, offering significant potential for early-stage detection and classification 
of diseases and pests. ML and DL algorithms automate feature extraction, making them ideal for cost-effective crop 
disease and pest detection, classification, and prediction [65]. These models are trained using labelled image datasets, 
with their detection and classification accuracy validated against testing sets. Typically, the model-based detection 
and classification process consist of four key steps, viz. image acquisition, image pre-processing, segmentation, 
feature extraction, and classification [66]. These steps are crucial for transforming raw image data into actionable 
insights (Fig. 3).

4.1  Image acquisition

The first step in the process is image acquisition, which involves capturing high-resolution images of both infected and 
healthy plant leaves. For optimal results, images should be taken under natural lighting conditions using a high-resolution 
digital camera. To increase dataset diversity, the multipatch technique is used, splitting captured image into several 
smaller patches [67]. Data-augmentation techniques, such as random cropping, scaling, rotation, noise injection, and 
translation, are applied to expand small datasets and improve model performance. Additionally, open-access repositories 
like PlantVillage, which hosts over 50,000 curated images of healthy and infected crop leaves serve as valuable resources 
for training datasets [68].

4.2  Image pre‑processing

Images captured in field conditions often contain complex backgrounds, multiple leaves, and varying lighting conditions, 
which can hinder model accuracy [69]. Preprocessing these images is an important step to remove undesired distortion 

Fig. 3  Steps involved in pest and disease diagnosis
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and enhance quality, enabling models to effectively learn the patterns of symptoms. The process typically involves 
clipping the images to focus on the region of interest, applying smoothing filters such as the Gaussian filter to reduce 
noise, and performing image enhancement to improve contrast [70].

4.3  Segmentation

In the image segmentation process, the pixels with similar color and brightness values are grouped to isolate the 
targeted regions, such as infected areas on diseased leaves. This step ensures that only relevant areas are analyzed for 
disease. Among segmentation techniques, the k-means clustering algorithm is commonly used due to its effectiveness 
in grouping similar pixels [71].

4.4  Feature extraction

Feature extraction simplifies the learning process by identifying critical features in the input images that the classification 
models can process. Techniques like the Histogram of Oriented Gradients (HoG) analyze the gradient distribution of 
edges oriented in various directions, enabling robust feature detection [72]. Other commonly used algorithms include 
Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), which extract essential features even 
in varying image conditions.

4.5  Classification

In the classification stage, predefined features, corresponding to healthy, non-healthy, and disease-specific patterns are 
used to train ML or DL algorithms. These models compare the color and texture variations in input images with predefined 
feature sets, classifying the leaves as either healthy or infected. For infected leaves, the models further determine specific 
diseases based on symptom patterns [73].

CNN has become a vital algorithm in pattern recognition in image processing [74]. A hybrid DL system that combines 
segmentation and classification capabilities can effectively identify infected regions on leaves and determine the 
specific disease [75]. When the training dataset includes all possible symptom variations of a disease, DL models handle 
classification challenges efficiently, ensuring robust disease identification [76]. Model performance is typically evaluated 
using standard object detection metrics, such as accuracy, precision, recall, and F1-score [77]. A detailed review of selected 
research papers on pest and disease detection and monitoring is discussed in Table 2.

In the field condition, fully automated pest detection without traps remains a significant challenge since many pests 
tend to reside on the undersides of leaves. Pheromone-based glue traps provide a practical solution, where pests are 
attracted and captured, and their images are recorded using a digital camera mounted above the trap [93]. However, 
this approach is less effective for pests that inflict damage during their larval stages. Accurate pest classification presents 
another challenge, as visual similarities between target and non-target pests can lead to misclassification [94]. To address 
this, models must be trained on extensive datasets containing wide diverse conditions to attain high precision [95, 96]. 
Data augmentation techniques, such as varying insect orientations and scales, are particularly beneficial for enhancing 
model performance in pest detection tasks [97]. Integration of remote sensing with ML and DL models has demonstrated 
high accuracy and efficiency in pest and disease monitoring, offering a scalable solution for agricultural management [98].

5  Soil nutrient level detection using ML and DL algorithms

The major processes involved in AI-based soil nutrient diagnosis are presented in Fig. 4. It begins with the collection of 
spectral data from sources such as satellites, UAVs, and spectrometers, alongside ground-truth soil samples to provide 
essential reference nutrient values for training and validating AI models. Preprocessing steps are then applied to the 
spectral data to remove noise and calibrate it with ground-truth nutrient values, ensuring accuracy and reliability. Key 
spectral features are subsequently extracted to focus on nutrient-specific information. Techniques like band selection 
and PCA are employed to isolate the spectral bands most strongly correlated with specific soil nutrients. Using this 
refined dataset, algorithms like RF, SVM, and XGBoost are trained. These models are optimized through hyperparameter 
tuning, and validated using robust cross-validation techniques and metrics such as  R2 and RMSE. Once validated, these 
models predict nutrient levels, producing nutrient distribution maps that guide precision soil management practices 
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like variable-rate fertilization. Continuous feedback and data from field applications are used to refine model accuracy 
and adaptability over time.

Pairing appropriate AI algorithms with spectral data significantly enhances the predictive accuracy of soil nutrient 
levels, a crucial aspect of effective soil management and sustainable agriculture. Our review of previously published 
research reveals that RF and SVR are among the most effective algorithms, particularly for predicting soil organic 
matter (SOM) and soil organic carbon (SOC). These algorithms consistently achieve high  R2 values. highlighting their 
robustness in handling spectral data across diverse sources [99–101]. Additionally, the Gradient Boosting Regression 
Tree (GBRT) algorithm has proven to be highly effective for multi-nutrient prediction (N, P, K). With its ability to achieve 
high ratio of performance to deviation (RPD) values, GBRT is well-suited for applications that require complex nutrient 
assessments [102]. Additionally, AI algorithms have shown their capability to effectively process diverse spectral datasets, 
including satellite and UAV data, to predict soil nutrient levels with remarkable precision (Table 3).

However, the choice of spectral data source significantly influences the accuracy of soil nutrient predictions. For 
example, Sentinel-2 and spectrometers have demonstrated superior accuracy in nutrient prediction when combined with 
advanced ML algorithms such as RF [103]. On the other hand, data from Landsat-8 showed comparatively lower predictive 
performance, indicating its limited applicability for soil nutrient assessment in certain contexts [102]. Compared to 
satellite data, UAV systems offer rapid, and highly accurate assessments, making them ideal for real-time, field-scale 
monitoring, a key advantage for precision agriculture applications. Most studies prioritize predicting SOC and SOM, 
essential indicators of soil health (Table 3). Very few studies have been attempted for multi-nutrient prediction. The 
multi-nutrient modeling approach could provide a holistic understanding of soil nutrient status, enabling timely nutrient 
management interventions.

6  Precision irrigation scheduling using AI

The essential steps in AI-based irrigation water scheduling are outlined in Fig. 5. The process begins with data collec-
tion, where real-time soil moisture data, along with historical weather, crop type, and field condition data from sensors 
and climate sources, is gathered. Preprocessing ensures data quality through cleaning, normalization, and calibration. 
Feature engineering then identifies critical variables, such as soil moisture levels and crop growth stages to enhance 
model accuracy. In model training, ML models (e.g., LSTM, Q-Networks) are selected and trained using historical data 
to recognize irrigation patterns. Validation follows, assessing model reliability with metrics like accuracy and RMSE. 

Fig. 4  Major steps involved in soil nutrient level detection using ML and DL algorithms
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For irrigation scheduling, real-time schedules are generated based on predicted water requirements, integrating cur-
rent weather forecasts. During implementation and feedback, these schedules are applied in the field, and continuous 
feedback from new data refines the model. Finally, monitoring allows for adjusting schedules based on field responses, 
optimizing water efficiency over time.

The application of AI in irrigation has led to substantial water savings across various crops. For instance, [111] 
documented a 43% reduction in water usage for farmland irrigation, while [31] reported approximately 30% savings 
for potato crops. Notably, [112] observed a 74% reduction in runoff for turfgrass irrigation using a Radial Basis Function 
Support Vector Machine (RBF-SVM) model. It underscores AI’s potential to minimize water pollution risks from agricultural 
runoff, especially in crops requiring precise water control. AI models not only improve water-use efficiency but also 

Table 3  Performance of different machine learning and deep learning algorithms in predicting soil nutrient levels focusing on the use of 
various spectral sources

Spectral source AI-algorithm Nutrient Performance References

GaiaSorter-dual
camera

PLSR SOC R2 0.61 [101]

Landsat-8 GBDT SOC R2 0.147 [102]
Sentinel-2 RF SOM R2 0.445 [103]
Spectrometer SVM SOC R2 0.32 [99]
Spectrometer Cubist SOC R2 0.35 [100]
Sentinel-2 XGBoost SOC R2 0.84 [104]
Spectrometer GBRT N, P, K GBRT with RPD 2.64, 3.93 and 2.38 for 

N, P and K, respectively
[105]

SVR AisaFenix sensor P, K, Ca, Mg, Cl, SOM R2 0.87 [106]
CART UAV N, SOC Overall Accuracy 87% [107]
RF Prisma SOM R2 0.92 [108]
Stepwise multiple 

regression
MODIS SOM R2 0.725 [109]

RF ASD field spectrometer SOM R2 0.838 [110]

Fig. 5  Major steps involved in AI-based irrigation scheduling
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enhance profitability in crops like maize and wheat [113]. ML models have achieved 97.8% accuracy in predicting soil 
humidity and temperature, facilitating real-time, precision irrigation [114].

The K-Nearest Neighbor (KNN) algorithm predicts crop water requirement based on crop growth stage with an accuracy 
of 97.4% and proposes an automated irrigation model that can improve water productivity [115]. Adaboost models 
achieved 71% accuracy in rice water demand forecasting [32], and Deep Q-Networks achieved 20–30% water savings in 
tomato irrigation [116], both demonstrate AI’s potential for crop-specific, efficient water management solutions tailored 
to environmental conditions. Overall, AI models can be utilized to optimize water use, improve irrigation scheduling, 
and increase economic returns across a variety of crops. The AI-based irrigation scheduling in different crops along with 
its benefits is summarized in Table 4.

7  Foodgrain quality assessments using AI

AI applications are revolutionizing foodgrain quality assessments by enabling rapid, accurate identification of high and 
low quality food products. Various ML and DL algorithms have assessed characteristics like color, texture, and kernel 
integrity across different grains. For wheat quality assessment, ML algorithms such as SVM, KNN, multilayer perceptron 
(MLP), and Naive Bayes (NB) have been used effectively to differentiate good and poor-quality grains. SVM, in particular, 
demonstrated a high accuracy of 93.46% in wheat quality classification based on color and texture features [117]. In 
contrast, DL approaches, such as the bidirectional long short-term memory (BiLSTM) algorithm, achieved even higher 
accuracy (99.5%) in distinguishing sunn pests (Eurygaster integriceps) affected wheat grains [118].

For maize kernel inspection, [119] developed an automatic inspection machine for maize kernel inspection via 
two-sided image capture and analysis. Using the CNN-based ResNet model, this system accurately classifies detective 
maize kernels as poor quality. This system processes approximately 500 g of maize kernels (around 1,250 kernels) in 
just 25 s, allowing for high-throughput and efficient defect detection. Similarly, advancements in AI have significantly 
improved adulteration detection in rice varieties. Estrada-Pérez et al. [120] employed CNNs to analyze thermographic 
images captured during cooling, effectively identifying adulterated rice samples and demonstrating that CNNs can be 
applied to non-visible quality traits. Similarly, pulse quality and impurity detection are facilitated by the FoodExpert 
mobile application, which uses the RF classification algorithm to sort pulses into quality grades and detect synthetic dye 
adulterations based on image data. This tool achieved 96% accuracy in pulse grading and 94% accuracy in identifying 
dye adulterations [121].

8  Limitations in using ML/DL algorithms

Conceptually ML/DL algorithms reproducibly mimic the biological human nervous system. However, the solutions they 
produce depend solely on the information with which the system is trained. These algorithms may produce misleading 
results when the ground reality is poorly represented by the input information [122]. These models may induce bias 
when irrelevant data, inappropriate pre-processing, lack of diversity, and imbalance in the data [123]. Especially, in 
pattern detection and classification problems like pest and disease detection, the accuracy and reliability of results are 
particularly sensitive to the prepossessing of images. The reliability and stability of the ML/DL models heavily depend 
on the size, quality, and diversity of the training data [124, 125].

ML and DL models require a large and more accurate dataset on weather and other environmental variables during 
crop season to find the best-performing model [126, 127]. Particularly, DL models require large amounts of data to provide 
stable performance and they generally exhibit poor performance with small datasets [128–130]. The availability of quality 
and long-term data is a constraint, especially for developing countries. However, artificial data augmentation techniques 
help deal with the problem of limited data availability to some extent [131]. Further, the transfer learning approach is 
helpful in this regard, in which models that are already trained on general global datasets can be utilized. Such models 
can be tuned to perform specific tasks by training considerably smaller and available problem-specific datasets [132].

Most of the ML and DL models are like “black boxes” [133]. Particularly, the DL structure consists of many hidden layers 
with numerous neurons per layer that perform multiple nonlinear transformations to produce a close to accurate level 
of precision for prediction. However, the interpretability of such models is a technically challenging issue, and virtually 
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impossible to see what is inside [134, 135]. However, the limitation of non-interpretability of ML/DL models can be 
ignored if the primary objective is just prediction [136].

The researchers need to have a solid knowledge of the working principle of ML/DL concepts to choose the appropriate 
algorithm for the problem under study. These analyses are generally performed using high-end coding software. 
Therefore, it is required to have good programming skills to avoid implementation errors [137]. Computer hardware with 
a high processing power is an obvious requirement to process large datasets by such a complex algorithm in reasonable 
timescales without any technical issues [138].

9  Potential future directions

Generally, the models are trained using observed historical data. However, it is important to incorporate dynamic 
updating mechanisms in the models to update the parameters to the latest available data. In field conditions, the 
plants are often infected by multiple diseases and the infected leaves exhibit the symptoms of different diseases. 
Therefore, to diagnose symptom-wise diseases, the models are to be trained in such a way as to capture the symptom 
patterns of each disease. The algorithms are to be trained in such a way that the results produced by them are less 
sensitive to extreme cases. The development of more transparent, interpretable, and accountable algorithms is the 
need of the hour. Integrating domain knowledge with algorithms is desirable to improve the practical utility of the 
models. It is highly important to design the algorithms to account for ethical considerations too.

10  Conclusions

AI applications in yield prediction, pest and disease diagnosis, soil fertility assessment, precision irrigation, and 
food quality have shown transformative potential for sustainable agriculture. In yield prediction, AI algorithms 
provide accurate forecasts based on climate, soil, and crop growth data, empowering farmers and policymakers to 
make proactive decisions to enhance productivity. The pest and disease diagnosis models enable early and precise 
detection, reducing crop loss and minimizing pesticide use. Soil fertility assessment benefits from ML techniques that 
analyze different spectra quickly with higher spatial and temporal resolution, helping farmers apply nutrients precisely 
where needed, improving nutrient use efficiency, soil health, and preventing fertilizer-associated pollution. AI-driven 
precision irrigation models process real-time soil moisture and weather data, ensuring optimal water usage and 
significantly conserving water resources while maximizing crop growth. Lastly, AI tools for food quality assessment 
leverage imaging and ML algorithms to sort grains, detect adulterations, and ensure high-quality produce reaches 
consumers. Together, these advancements underscore AI’s critical role in enhancing efficiency, sustainability, and 
profitability in modern agriculture, laying the foundation for more resilient and resource-efficient farming systems.
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